Telefono Gimnasio Virtual San Francisco Javier
Estructura y Funcíon Celular Referente a Organelos Citoplasmaticos y Organelos de Células Vegetales

  • NÚCLEO: El núcleo es una estructura ovalada, delimitada por una membrana que permite el paso de materiales hacia su interior y hacia el citoplasma. Es una estructura muy importante porque en él se encuentran las moléculas del ADN, que dirigen las funciones celulares. El núcleo está cubierto por una estructura de doble pared con poros llamada membrana celular, que envuelve material cromosómico. Casi todas las células presentan núcleo, excepto las algas verdeazules y las bacterias, que carecen de envoltura para su material hereditario.
  • NUCLÉOLO: Son generalmente un cuerpo redondeado en número variable de 1 hasta 4 ó 5, según la célula en la que se trate y a veces queda enmascarada por la cromatina condensada. Sólo se observan en el núcleo la interfase, el cual se encuentra formado principalmente por ARN.
  • MITOCONDRIAS: son organoides rodeados por una doble membrana llamada mitocondrial, dividida en dos sectores: la interna y la externa.


La interna presenta pliegues que se observan como pequeños compartimentos y reciben el nombre de crestas mitocondriales, que le permiten extenderse o encogerse de acuerdo con las condiciones del medio, y proporcionan a la célula la mayor cantidad de energía. Su función es transformar las sustancias provenientes de los alimentos, para producir energía. La mitocondria se conoce como la central enérgica de la célula.

  • RIBOSOMAS: Son estructuras pequeñas que se encuentran suspendidas en el citoplasma o adheridas al retículo endoplasmático. Constituyen el sitio en donde se lleva a cabo la reproducción.
  • APARATO DE GOLGI: Está constituido por tubitos que tienen la forma de sacos aplastados. Se las ha relacionado con la secreción celular; por ejemplo, algunas sustancias como las hormonas, las enzimas y los lípidos se acumulan en porciones del complejo de Golgi para ser secretadas posteriormente.
  • LAS VACUOLAS: Son espacios cerrados donde se almacenan las reservas de alimento. Dependiendo de la función que desempeñe la célula, ésta varía en forma y tamaño. En las células muy jóvenes las vacuolas son muy pequeñas y suelen confundirse con las mitocodrias, pero a medida que la célula crece, las vacuolas aumentan de tamaño y pueden llegar a unirse entre sí y ocupar casi todo el espacio celular; esto último se ha observado principalmente en las células vegetales.
  • LISOSOMAS: son bolsas que se originan en el cuerpo de Golgi. Están rodeados por una membrana simple en cuyo interior se encuentran moléculas complejas llamadas enzimas, encargadas de desdoblar en moléculas más pequeñas las grandes moléculas. Otra función es defender a la célula de bacterias o cuerpos extraños (como lo hacen los glóbulos blancos en la sangre). Cuando llegan cuerpos extraños a la célula, la membrana los encierra, formando una bolsa, y el contenido de los lisosomas es vertido, destruyéndolos. Solo se encuentran en la célula animal.

    Los lisosomas regulan los procesos digestivos de proteínas y azúcares, así como la destrucción de partículas extrañas y material muerto.
  • PLASTIDIOS: Son cuerpos redondos, en forma de disco, que se encuentran sólo en las células vegetales. Pueden distinguirse tres clases de plastidios: cloroplastos, leucoplastos y cromoplastos.
  • CLOROPLASTOS son organelos que contienen el pigmento verde, llamado clorofila, que le da el color verde a los vegetales y participa capturando en la fotosíntesis, energía de la Luz del sol. La reacción general de la fotosíntesis se puede expresar así:
  • CROMOPLASTOS se caracterizan por poseer pigmentos como el amarillo y el anaranjado; de ellos, depende el color de las flores y frutos.
  • LOS LEUCOPLASTOS: son plastidios incoloros, que sirven como centros de almacenamientos de almidón y otros materiales.
  • PARED CELULAR: además de la membrana, las células de los vegetales contienen una capa de celulosa (molécula formada por carbohidratos) que las rodea, dándoles forma y resistencia. Esta pared representa diminutos filamentos citoplasmáticos, llamados plasmodesmos, que atraviesan las paredes celulares, permitiendo el intercambio de sustancias de una célula a otra.


Qué es el A.D.N., quién lo descubrió, función principal, composición y replicación de la molécula del A.D.N.

El A.D.N. es el código genético universal; presenta una estructura espacial en forma de doble hélice, con las dos hebras unidas por medio de enlaces químicos. Esta imagen es paradigmática del gran avance logrado por la genética a partir a mediados del siglo XX.

¿Quién lo descubrió?

La estructura del A.D.N. fue descubierto en 1869 por Friedrich Meister, el papel básico del A.D.N. en la transmisión de los caracteres genéticos fue definido en 1944 por Avery, Macleod y MacCarty, quienes demostraron que el A.D.N. de bacterias muertas podría influir en el material genético de las materias vivas. Pero el descubrimiento de la estructura en doble hélice del A.D.N. y el mecanismo por el cual se autoduplica y así transmite a cada célula hija la información genética fue llevado a cabo por los biólogos Crick y Watson en un laboratorio de investigación de Cambridge. Para sus estudios, se basaron en radiografías de A.D.N. tomadas por Wilkins, por lo que recibieron los tres el premio Nobel de Medicina y Fisiología en 1962.

Función Principal

La función principal del A.D.N. consiste en transmitir los genes, es decir los caracteres biológicos de un individuo determinado. En los genes del A.D.N. están grabadas las instrucciones necesarias para la construcción de un individuo completo, al igual que los planos de una casa contienen indicaciones precisas para su construcción. Siguiendo estas instrucciones, cada célula es capaz de sintetizar sus proteínas y de adoptar la forma y función que le corresponden dentro del organismo.

Composición y Estructura del A.D.N.

La molécula de A.D.N. es una larga doble hélice enrollada sobre sí misma, semejante a una escalera de caracol. En ella, dos ramales compuestos de moléculas de azúcar (desoxirribosa) y fosfatos, se conectan gracias al apareamiento de cuatro moléculas denominadas bases, las cuales forman los eslabones de la escalera. Estas cadenas formadas por cuatro nucleótidos distintos, compuestos además por un azúcar (la desoxirribosa), un ácido fosfórica, y una de las siguientes bases nitrogenadas: adenina (A), guanina(G), citosina (C) o timina (T).

En los eslabones, la adenina se aparea con la timina y la guanina con la citosina. Así un enlace de hidrógeno. Un gen es segmento de un A.D.N., que tiene una determinada función y está constituido por una secuencia específica de bases.

Replicación del A.D.N.

Según el modelo de Watson y Crick, estas dos cadenas se disponen de una forma determinada: las bases se encuentran frente a frente, de modo que enfrente de la adenina siempre hay una timina, y en frente de la citosina, una guanina. Esta colocación permite el establecimiento de puentes de hidrógeno entre las bases enfrentadas. Así mismo, estas dos cadenas se enrollan además en forma de doble hélice, cuyas dimensiones, según estos autores, son: 10 angstrom de grosor y 34 angstrom de longitud por vuelta de hélice. (1 angstrom= 10 m.).

Conociendo el orden de colocación de cada una de las bases en una de las cadenas, se puede predecir el de la otra. Gracias a esto es posible la replicación del A.D.N.: cuando los dos filamentos de la espiral se separan, a cada uno de ellos se van enfrentando las correspondientes bases nitrogenadas, construyéndose así a partir de una molécula de A.D.N. dos idénticas a ella.

El orden en que están colocadas estas bases al formar los eslabones de la cadera determina un mensaje concreto, de manera que si se cambia el orden, cambia el mensaje.

Qué es el A.R.N., quién lo descubrió, función principal. Qué es el A.R.N. mensajero (M.A.R.N.), A.R.N. de transferencia (T..A..R..N.), y A.R.N. ribosoma (R.A.R.N.).

El ARN, o ácido ribonucleico, es una molécula parecida al ADN, pero con algunas diferencias. Aunque también está formada por cuatro bases, sin embargo éstas son ribonucleicas (como azúcar contienen ribosa en lugar de desoxirribosa). Otra diferencia es que carece de timina, y en su lugar contiene uracilo (U). El resto de las bases; adenina, citosina y guanina son las mismas. Por último, cabe decir que el ARN generalmente forma monocadenas, aunque las bases U-T y C-G se complementan y pueden formar estructuras secundarias como bucles u horquillas.

¿Quién lo descubrió?

El ARN fue descubierto por Palade y Siekevitz en el mismo retículo endoplasmático y se vio que su función era la síntesis proteica.

Función principal

La función principal consiste en la síntesis proteica. Había relación directa entre la cantidad de ribosomas y la síntesis de proteínas. Al principio no se conocía el método a través del cual el núcleo pasaba la información a los ribosomas sobre qué tipos de proteínas debían producirse., pero luego se logró determinar que el ARN produce proteínas.

  • ARN MENSAJERO (ARNM) Es el que se encarga de transportar la información genética del ADN (que se encuentra en el núcleo) a los ribosomas (que están en el citoplasma).
  • ARN RIBOSÓMICO (ARNr) Es uno de los componentes principales de los ribosomas. Los ribosomas son elementos básicos en la síntesis proteica; se disponen en espiral.
  • ARN DE TRANSFERENCIA (ARNt) Se encarga del transporte de los aminoácidos y de su incorporación a la cadena polipeptídica que se esté formando.


Además de éstos, en el núcleo de la célula otros tipos de ARN involucrados en la síntesis de los ARNm. Por último, hay que decir que hay algunas bacterias y virus que en lugar de ADN tienen ARN como material genético.

Funcionalidad de la Membrana Celular

La membrana toma parte activa en el metabolismo celular. Sus funciones son:

  • La membrana es un elemento de protección y soporte.
  • La membrana controla de manera selectiva la entrada y salida de materiales a la célula. Esto incluye el ingreso de igual y moléculas de gran tamaño por el proceso de endocitosis y la salida de productos celulares por exocitosis.
  • Desempeña una labor inmunológica: en la membrana se acumulan sustancias que defienden a la célula de las infecciones.
  • En microorganismos como la amiba, la membrana facilita la absorción de alimentos mediante el proceso de fagocitosis o captura de partículas sólidas; y de pinocitosis o absorción de líquidos.
  • Membranas como la del euglena y el paramecio poseen filamentos, flagelos y cilios que sirven como órganos de locomoción.
  • Regular el paso de sustancias hacia el interior y exterior de la célula.
  • Mantener la forma de la célula.
  • Transportar moléculas grandes hacia afuera y dentro de la célula.
  • Conservar reunidos a los demás componentes de la célula.


Tamaño y composición

La célula existe como entidad individual debido a su límite exterior, que está constituido por la membrana celular.

La membrana celular es tan delgada que difícilmente puede verse con el microscopio óptico, su estructura interna sólo puede estudiarse con el microscopio electrónico, donde se aprecia como una fina línea doble.

Se han propuesto varios modelos para describir la estructura de la membrana. El más reciente es el modelo de mosaico fluido, el cual sostiene que la membrana está constituida por dos capas de lípidos (grasas). Hacia ambos lados de estas dos capas, se encuentra proteínas. En el exterior de la membrana se hallan otras sustancias, llamadas carbohidratos (azúcares).

El modelo se llama mosaico fluido porque algunas de las moléculas de proteínas se desplazan de uno a otro lado de la membrana, transportando algunas sustancias para la célula.

Transporte celular activo y pasivo, difusión, ósmosis procesos de transporte celular como: pinocitosis y exocitosis e ilústralos.


La difusión es un proceso dinámico: una vez las moléculas inician su difusión espontáneamente, tienden a ocupar el mayor espacio disponible. Esto es disponible ya que cada molécula posee suficiente energía para moverse en cualquier dirección. Una vez se ha alcanzado el estado de máxima dispersión, las moléculas continúan moviéndose en desorden, pero el sistema conserva una homogeneidad aparente. Esto se debe a que si una partícula abandona un lugar, ésta lo ocupa otra y así sucesivamente. Esta condición se denomina equilibrio dinámico.

Osmosis

La membrana plasmática es la responsable de un movimiento especial del agua llamado ósmosis: cuando dos medios A y B presentan distinta concentración y se encuentran separados por una membrana semipermeable (por ejemplo la membrana plasmática), el agua tiende a pasar del medio menos concentrado (hipotónico) al más concentrado (hipertónico) hasta que llegue a una situación en la que ambos medios tengan la misma concentración (isotónicos). En el caso de las moléculas de agua y de otras sustancias, su transporte no supone un gasto de energía para la célula. En otras ocasiones, sin embargo, la célula puede necesitar incorporar ciertas moléculas pero a costa de un consumo de energía.