La interna presenta pliegues que se observan como pequeños compartimentos y reciben el nombre de crestas mitocondriales, que le permiten extenderse o encogerse de acuerdo con las condiciones del medio, y proporcionan a la célula la mayor cantidad de energía. Su función es transformar las sustancias provenientes de los alimentos, para producir energía. La mitocondria se conoce como la central enérgica de la célula.
Qué es el A.D.N., quién lo descubrió, función principal, composición y replicación de la molécula del A.D.N.
El A.D.N. es el código genético universal; presenta una estructura espacial en forma de doble hélice, con las dos hebras unidas por medio de enlaces químicos. Esta imagen es paradigmática del gran avance logrado por la genética a partir a mediados del siglo XX.
¿Quién lo descubrió?
La estructura del A.D.N. fue descubierto en 1869 por Friedrich Meister, el papel básico del A.D.N. en la transmisión de los caracteres genéticos fue definido en 1944 por Avery, Macleod y MacCarty, quienes demostraron que el A.D.N. de bacterias muertas podría influir en el material genético de las materias vivas. Pero el descubrimiento de la estructura en doble hélice del A.D.N. y el mecanismo por el cual se autoduplica y así transmite a cada célula hija la información genética fue llevado a cabo por los biólogos Crick y Watson en un laboratorio de investigación de Cambridge. Para sus estudios, se basaron en radiografías de A.D.N. tomadas por Wilkins, por lo que recibieron los tres el premio Nobel de Medicina y Fisiología en 1962.
Función Principal
La función principal del A.D.N. consiste en transmitir los genes, es decir los caracteres biológicos de un individuo determinado. En los genes del A.D.N. están grabadas las instrucciones necesarias para la construcción de un individuo completo, al igual que los planos de una casa contienen indicaciones precisas para su construcción. Siguiendo estas instrucciones, cada célula es capaz de sintetizar sus proteínas y de adoptar la forma y función que le corresponden dentro del organismo.
Composición y Estructura del A.D.N.
La molécula de A.D.N. es una larga doble hélice enrollada sobre sí misma, semejante a una escalera de caracol. En ella, dos ramales compuestos de moléculas de azúcar (desoxirribosa) y fosfatos, se conectan gracias al apareamiento de cuatro moléculas denominadas bases, las cuales forman los eslabones de la escalera. Estas cadenas formadas por cuatro nucleótidos distintos, compuestos además por un azúcar (la desoxirribosa), un ácido fosfórica, y una de las siguientes bases nitrogenadas: adenina (A), guanina(G), citosina (C) o timina (T).
En los eslabones, la adenina se aparea con la timina y la guanina con la citosina. Así un enlace de hidrógeno. Un gen es segmento de un A.D.N., que tiene una determinada función y está constituido por una secuencia específica de bases.
Replicación del A.D.N.
Según el modelo de Watson y Crick, estas dos cadenas se disponen de una forma determinada: las bases se encuentran frente a frente, de modo que enfrente de la adenina siempre hay una timina, y en frente de la citosina, una guanina. Esta colocación permite el establecimiento de puentes de hidrógeno entre las bases enfrentadas. Así mismo, estas dos cadenas se enrollan además en forma de doble hélice, cuyas dimensiones, según estos autores, son: 10 angstrom de grosor y 34 angstrom de longitud por vuelta de hélice. (1 angstrom= 10 m.).
Conociendo el orden de colocación de cada una de las bases en una de las cadenas, se puede predecir el de la otra. Gracias a esto es posible la replicación del A.D.N.: cuando los dos filamentos de la espiral se separan, a cada uno de ellos se van enfrentando las correspondientes bases nitrogenadas, construyéndose así a partir de una molécula de A.D.N. dos idénticas a ella.
El orden en que están colocadas estas bases al formar los eslabones de la cadera determina un mensaje concreto, de manera que si se cambia el orden, cambia el mensaje.
Qué es el A.R.N., quién lo descubrió, función principal. Qué es el A.R.N. mensajero (M.A.R.N.), A.R.N. de transferencia (T..A..R..N.), y A.R.N. ribosoma (R.A.R.N.).
El ARN, o ácido ribonucleico, es una molécula parecida al ADN, pero con algunas diferencias. Aunque también está formada por cuatro bases, sin embargo éstas son ribonucleicas (como azúcar contienen ribosa en lugar de desoxirribosa). Otra diferencia es que carece de timina, y en su lugar contiene uracilo (U). El resto de las bases; adenina, citosina y guanina son las mismas. Por último, cabe decir que el ARN generalmente forma monocadenas, aunque las bases U-T y C-G se complementan y pueden formar estructuras secundarias como bucles u horquillas.
¿Quién lo descubrió?
El ARN fue descubierto por Palade y Siekevitz en el mismo retículo endoplasmático y se vio que su función era la síntesis proteica.
Función principal
La función principal consiste en la síntesis proteica. Había relación directa entre la cantidad de ribosomas y la síntesis de proteínas. Al principio no se conocía el método a través del cual el núcleo pasaba la información a los ribosomas sobre qué tipos de proteínas debían producirse., pero luego se logró determinar que el ARN produce proteínas.
Además de éstos, en el núcleo de la célula otros tipos de ARN involucrados en la síntesis de los ARNm. Por último, hay que decir que hay algunas bacterias y virus que en lugar de ADN tienen ARN como material genético.
Funcionalidad de la Membrana Celular
La membrana toma parte activa en el metabolismo celular. Sus funciones son:
Tamaño y composición
La célula existe como entidad individual debido a su límite exterior, que está constituido por la membrana celular.
La membrana celular es tan delgada que difícilmente puede verse con el microscopio óptico, su estructura interna sólo puede estudiarse con el microscopio electrónico, donde se aprecia como una fina línea doble.
Se han propuesto varios modelos para describir la estructura de la membrana. El más reciente es el modelo de mosaico fluido, el cual sostiene que la membrana está constituida por dos capas de lípidos (grasas). Hacia ambos lados de estas dos capas, se encuentra proteínas. En el exterior de la membrana se hallan otras sustancias, llamadas carbohidratos (azúcares).
El modelo se llama mosaico fluido porque algunas de las moléculas de proteínas se desplazan de uno a otro lado de la membrana, transportando algunas sustancias para la célula.
Transporte celular activo y pasivo, difusión, ósmosis procesos de transporte celular como: pinocitosis y exocitosis e ilústralos.
La difusión es un proceso dinámico: una vez las moléculas inician su difusión espontáneamente, tienden a ocupar el mayor espacio disponible. Esto es disponible ya que cada molécula posee suficiente energía para moverse en cualquier dirección. Una vez se ha alcanzado el estado de máxima dispersión, las moléculas continúan moviéndose en desorden, pero el sistema conserva una homogeneidad aparente. Esto se debe a que si una partícula abandona un lugar, ésta lo ocupa otra y así sucesivamente. Esta condición se denomina equilibrio dinámico.
Osmosis
La membrana plasmática es la responsable de un movimiento especial del agua llamado ósmosis: cuando dos medios A y B presentan distinta concentración y se encuentran separados por una membrana semipermeable (por ejemplo la membrana plasmática), el agua tiende a pasar del medio menos concentrado (hipotónico) al más concentrado (hipertónico) hasta que llegue a una situación en la que ambos medios tengan la misma concentración (isotónicos). En el caso de las moléculas de agua y de otras sustancias, su transporte no supone un gasto de energía para la célula. En otras ocasiones, sin embargo, la célula puede necesitar incorporar ciertas moléculas pero a costa de un consumo de energía.